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Controllable motions of a three-link system along a horizontal plane when there is dry friction are considered. Previously obtained 

results are generalized and refined. 0 2001 Elsevier Science Ltd. All rights reserved. 

1. THE MECHANICAL MODEL 

The biomechanics of the motion of snakes and other animals without extremities have been considered 
in a number of publications [l-4]. Allowance has been made for the presence of a support on channel 
walls [l] or vertical surfaces [2]; bends in a vertical plane have been considered [3] and models with 
wheels have been investigated [4]. It has been shown [5] that a simple three-link system may move in 
any direction along a horizontal plane only by allowing bends in the plane and assuming that there is 
dry friction between the system and the plane. A mode of locomotion has been proposed and the 
displacements and velocity of the motion have been estimated. 

In this paper the same mechanical model and principle of motion as in [5] will be used. We will consider 
a more general control law for the motion and more general contact conditions. With these 
generalizations, which take into account experience in the experimental implementation of the model, 
conditions will be derived for the motions to be feasible. These conditions generalize and refine the 
results obtained in [5]. 

Consider a plane three-link system 01ClCz02 moving along a fixed horizontal plane Oxy (see the 
figure). For simplicity, we will assume that the entire mass of the system is concentrated at the end 
points O1 and O2 - masses m. - and at the hinges C, and C2 - masses ml. The total mass of the system 
is m = 2(mo + ml). The links are assumed to be weightless rigid rods. The link ClC2 of length 2a, together 
with the masses concentrated at the hinges C1 and CZ, will be called the body, and the links OICl and 
C2, both of length 1, together with the masses at the endpoints, will be called the end links. 

Letx,y denote the Cartesian coordinates of the centre of mass of the body C,C,, 0 the angle at which 
the body is inclined to the x axis, and ai the angles between the body and the end links OiCi (i = 1,2). 

Each of the point masses Oi, Ci (i = 1, 2) is subject to a dry friction force obeying Coulomb’s law. 
The coefficient of friction for mass m. is ko, and that for mass ml is kl. 

Control torques M1 and M2 are produced by motors mounted in the hinges C1 and C2. We shall say 
that the torques M1 and M2 are applied to the end links OICl and 02C2, respectively, then the body is 
subject to torques -M1 and -M2. 

Any motion of the three-link system may be constructed as a combination of certain simpler motions, 
which we will refer to as elementary motions [5]. 

2. ELEMENTARY MOTIONS 

Elementary motions (EMS) begin and end in a state of rest. They are characterized by the laws governing 
the variation of the angles c+(t) (i = 1, 2) of rotation of the end links relative to the body. Either one 
or both angles ai may vary in an EM. In the second case, both end links rotate synchronously, either 
in the same direction or in opposite directions, so that 

c&(t) = + oi, (f) (2-l) 

Unlike our previous approach [5], the variation of the angular velocity w(t) = 1 tii (t) 1 is assumed to be 
quite arbitrary. The only important condition is that in any EM both links begin and finish rotating 
simultaneously, and the angles ai vary in the range (-Z, 7~). 

tPrik1. Mar. Mekh. Vol. 65, No. 1, pp. S-20, 2001. 

13 



14 E L. Chernous’ko 

x 

Fig. 1 

We distinguish between slow and fast EMS. In slow EMS the magnitudes of the angular velocity m(t) 
and angular acceleration I = b(t) of the end links are fairly small, so that the body CICz remains 
stationary. The duration of the slow EMS is denoted by T. The conditions for slow EMS to be possible 
will be derived below. 

In fast EMS, whose duration is fairly short (r 4 T), the angular velocities a(t) and accelerations I 
are, conversely, fairly large. In this case the magnitudes of the control torques M, and Mz are large 
compared with the torques created by the friction forces 

1 Mi I+ m’gk’l’, m* = max(ma,m,) (2.2) 

k* = max(ka, k,), I’ = max(l,a) 

When considering fast EMS, therefore, friction forces need not be taken into account. Consequently, 
the laws of conservation of momentum and of angular momentum hold for fast EMS. 

3. CONSTRUCTION OF THE MOTIONS 

We will now show how any motion of a three-link system along a horizontal plane can be built up 
from EMS [5]. Suppose that at the start the system is at rest with all its links parallel to the x axis. In 
this state we have 8 = crl = a2 = 0. For brevity, we will denote slow and fast motions by the letters S 
and F, respectively, indicating the limits of the variation of the angles aj in each elementary motion 
(from c$ to a!) symbolically: a: -+ ai. Throughout what follows, y E (-rt, rc) will denote a certain fixed 
angle. 

Longitudinal motion consists of the following EMS: 

1) s, ai: 0 -+ y, cQ(t) = 0; 
2) F, a,: y + 0, 02: 0 + y; 
3) s, a,: 0 -+ -y, o2: y + 0; 
4) F, al: -y -_j 0, a2: 0 + -y; 
5) s, ai: 0 + y, a2: -y -+ 0. 

It is obvious that after step 5 the system has the same configuration as after step 1: o1 = y, a2 = 0. 
After that, the cycle of the four EMS 2-5 may be repeated any desired number of times. For the system 
to reach its original straight-line configuration, al = a2 = 0, at th e end of the motion, it is sufficient 
to perform a slow motion: 

M, al: y + 0, a2 = 0. 

In the course of the slow motions, the body remains stationary, while the centre of mass of the system 
moves. In the course of the fast motions, conversely, the centre of mass is a fixed point and the body 
moves. As has already been shown [5], the total displacement of the mid-point of the body along the 
x axis, through the cycle of motions 2-5, is equal to 

A,x = 8mom-‘I sin2(y / 2), m = 2(ma + ml ) (3.1) 



The motion of a three-link system along a plane 15 

The total displacement of the mid-point of the body along they axis and the total rotation of the body 
over a full cycle both vanish: Aey = 0, A& = 0. Since the duration of the fast motions z is much less 
than that of the slow motions, it follows that the total duration of a cycle is approximately 21; and the 
mean velocity of longitudinal motion is 

ut = A&27-)-’ (3.2) 
Lateral motion is described as follows: 

1) s, CQ: 0 + -y, o2: 0 + y; 
2) F, ai: -y + y, o2: y + -y; 
3) s, at: y + -y, a5 -y + y. 

The system has the same configuration after step 3 as after step 1: ai = -y, a2 = y. The cycle of two 
motions 2 and 3 may be repeated. In order to return to the original linear configuration aI = a2 = 0, 
it is sufficient to perform the motion 

s, at: -y + 0, a5 y -9 0. 

In the cycle of motions 2 and 3, the total displacement of the mid-point of the body along the x axis 
and the total rotation of the body amount to zero: Q = 0, A9 = 0. The total displacement per cycle 
along they axis and the average velocity of lateral motion are 

&y = 4mem-il sin y, y = &yT-’ 

Rotation of the system is achieved as follows: 

1) s, ai: 0 + yi, a5 0 + y1; 

2) F, al: YI + ~2, ~2: YI + ~2; 

3) S, al: Y2 + Yb a2: Y2 + Ylt 

(3.3) 

where y1 and y2 are angles in the range (-n, n). Motions 2 and 3 may be repeated. To return the system 
to its original linear configuration al = a2 = 0, one has to perform the motion 

s, a,: yi 3 0, a5 yi --+ 0. 

The total displacement of the mid-point of the body in the cycle of motions 2 and 3 is zero: 
AG = Aoy = 0; the total angle of rotation A& depends on the angles y1 and y2 and was determined in 

151. 

4. THE CONDITIONS FOR THE FEASIBILITY OF THE MOTIONS 

We will now derive the suf~cient conditions for the body to remain stationa~ during slow motions. 
To do this, assuming the body C&z to be stationary, we will determine the forces and torques 
applied to it by the rotating links OiCi and 02C2. We will then formulate equilibrium equations for 
the body allowing for the interaction of the links and friction forces. The body will be stationary if 
friction forces at rest exist which satisfy Coulomb’s law and ensure that the equilibrium equations are 
satisfied. 

Following the scheme just outlined, we first formulate the equations of motion of the links 
OiCi (i = 1, 2). The equation of the torques is 

m,f%, = Mi - mogkolsignCki, i = I.2 (4.1) 

Let Rj and Ni denote the components of the reaction force applied at the end of link OiCi by the body 
(see the figure). These components are determined from the equations of motion of the centre of mass 
of the end links. The force Ni is directed along the link OiCi and is equal to 

Ni = rn,i&~ 

while the component Ri is perpendicular to the link OiCi and is determined by the equations 

(4.2) 

. . 
R, = m&q f m,gk, sign ai = Mil 

-1 
(4.3) 
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The stationary body is subject to the components of the forces (-iVi), (-Ri) exerted by the end links, 
to torques -Mi and -M2, and also to friction forces at the points C, and Cz. Let the Ox axis of the 
coordinate system Oxy be directed along the body CiCt and let Xi and Yi denote the projections of the 
friction forces at the points Ci (i = 1, 2) on the x and y axes, respectively. As the three equilibrium 
equations of the body we take the condition that the sums of torques created by the forces applied to 
the body about the points Ci and C2 vanish, and the condition that the sum of the projections of all 
forces on the x axis also vanish. We obtain 

2a(N,sina;!-R2cosa2)+2aY2-MM]-MM2=0 

2a(N, sin a, - R, cosa,) - 2aq - M, - M, = 0 (4.4) 

-N,cosa,-R,sina,+Nzcosat+Rzsina2+X,+X2=0 

This system is statically indeterminate: we have only three equations (4.4) for four unknown forces 
Xi, K (i = 1,2). In addition, the inequalities of Coulomb’s law must be satisfied 

(x;+yr*)“+, F;=m,gk,, i=1.2 (45) 

To achieve equilibrium, it will suffice to find at least one pair of forces Xi, x (i = 1, 2) satisfying 
relations (4.4) and (4.5). The forces yi are uniquely defined by the first two equations of (4.4) 

Yi = f(N; sin a, -R; cos ai) T Q, i= 1,2 (4.6) 

where we have introduced the notation 

Q = (MI + M2)/(2a) (4.7) 

Put 

Xi = N, COS (xi + R, Sill (xi, i= 1,2 (4.8) 

The last equation of (4.4) is thereby satisfied. Substituting formulae (4.6) and (4.8) into the left-hand 
side of inequality (4.5) simplifying and using the inequality 

la sin a + b cos al c (a* + b’)ln 

which holds for any a, b and a, we obtain 

xi’ + 52 = N,? + R,* + Q* - 2Q(Ni sin oi - Ri cosai) S 

s N~+R,~+Q2+2~Q~(N~+R,2)“2=[(N,?+R,!)”2+(Q,]2 

We introduce the following notation 

(4.9) 

00 = max I it, I, E. = max I iii I (4.10) 

where the maxima are evaluated over all slow motions; by condition (2.1) they are independent of 
i = 1, 2. Relations (4.1)-(4.3) and (4.10) imply the following estimates 

I M; (C mof(ko +gko), I Ri 1s mo(f&o +gko), (Ni IS moldy, i= I,2 (4.11) 

If the end links rotate in the same direction, i.e., the plus sign is taken in (2.1) then Mi = M2. In 
that case it follows from (4.7) and (4.11) that 

IQI S m&l&o + gko)/a 

Substituting estimates (4.11) (4.12) into (4.9) we conclude 
provided that 

(4.12) 

that inequalities (4.5) will be satisfied 
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(4.13) 

If only one end link participates in the slow motion, then one of the torques Mj will vanish, 
estimate (4.12) holds as before and condition (4.13) is again a sufficient condition for the body to be 
in equilibrium. 

If the end links rotate in opposite directions, that is,. the minus sign is taken in (2.1), then 
Mi = -IW~ and, by (4.7), Q = 0. In that case we deduce from (4.11) and (4.9) the following sufficient 
condition for inequalities (4.5) to hold 

m,l[o; +(&a +gk,f-‘)2]“2 s qgk, (4.14) 

In longitudinal motion and rotation of the mechanism, the end links will rotate in the same direction 
in slow motions, but in lateral motion they will always rotate in opposite directions (see Section 3). Hence 
conditions (4.13) are sufficient for longitudinal motion and rotation to be feasible, while the sufficient 
condition for lateral motion to be feasible is less restrictive, having the form (4.14). 

Note that condition (4.13) is satisfied if the motion takes place sufficiently slowly, that is, w. and co 
are sufficiently small and in addition 

moko(a + I) c m,k,a 

Condition (4.14) is satisfied if w. and co are sufficiently small and, in addition, moko < m&i. 
In [5] we considered a special case of slow motions in which the magnitude of the angular velocity 

of the end links w(t) at first increases linearly and then decreases linearly; the angular acceleration was 
assumed to be constant in magnitude. In that case, 

O(f) = &f, t E [O, T/21; O(t) = EiJ(T- 0, t E V-/2, rl (4.15) 

The feasibility conditions given for this case in [5] - inequalities (4.14) and (4.16) (and conditions 
(6.3) and (7.3), which follow from them) - were incorrect, because formula (4.1) for Ri in [5] 
omitted the second term, shown in formula (4.3) of the present paper. This error has been rectified 
in the above conditions (4.13) and (4.14). In addition, as the bounds have been improved, the left- 
hand side of our present inequality (4.13) does not contain the coefficient 42, as in inequality (4.14) 
of [5]. 

As an example, let us consider a three-link system with the following parameters 

0 = I = 0.2 m, m, = I .2 kg, mg = 0.4 kg 

m = 3.2 kg, ki = ku = 0.2, g = 9.81 rnse2 

Suppose the slow motions are described by Eqs (4.15). For this case, 

(4.16) 

The maximum angle of rotation of the end links y and the maximum angular acceleration E,, are taken to be 
y = 1 rad and ~~ = 4 rads-‘. According to Section 3, for longitudinal motions, ) Acx 1 = y, and it follows from (4.16) 
that T = 1 s and o. = 2 radY2; for lateral motions, 1 ACC ( = 2y, T = 1.4 s and o. = 2.8 radse2. Verification of the 
feasibility conditions (4.13) and (4.14) shows that they are indeed satisfied. Calculating the displacements and average 
velocities of the motions by formulae (3.1)-(3.3) we obtain 

“I = 0.023 ms-i. y = 0.034 ms-’ 

According to estimates (2.2), the control torques necessary to realize fast motions must be an order of 
magnitude greater than those created by the friction forces. In this example, the torques must be of the order of 
6-8 N.m. 

As has been shown, conditions (4.13) and (4.14) derived above hold for fairly general laws of motion 
of the links and for different coefficients of friction for masses ml and mo. In the experimental 
implementation of the proposed motion, carried out at the Munich Technical University by E Pfeiffer, 
M. Gienger and G. Mayr, the control laws used were such that the angular velocity u(t) and angular 
acceleration I varied smoothly, while the coefficients of friction for the masses ml and m. were 
different. The experiments demonstrated that this mode of motion is feasible in practice. 
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